Toward an efficient and scalable feature selection approach for internet traffic classification

نویسندگان

  • Adil Fahad
  • Zahir Tari
  • Ibrahim Khalil
  • Ibrahim Habib
  • Hussein M. Alnuweiri
چکیده

There is significant interest in the network management and industrial security community about the need to identify the ‘‘best’’ and most relevant features for network traffic in order to properly characterize user behaviour and predict future traffic. The ability to eliminate redundant features is an important Machine Learning (ML) task because it helps to identify the best features in order to improve the classification accuracy as well as to reduce the computational complexity related to the construction of the classifier. In practice, feature selection (FS) techniques can be used as a preprocessing step to eliminate irrelevant features and as a knowledge discovery tool to reveal the ‘‘best’’ features in many soft computing applications. In this paper, we investigate the advantages and disadvantages of such FS techniques with new proposed metrics (namely goodness, stability and similarity). We continue our efforts toward developing an integrated FS technique that is built on the key strengths of existing FS techniques. A novel way is proposed to identify efficiently and accurately the ‘‘best’’ features by first combining the results of some well-known FS techniques to find consistent features, and then use the proposed concept of support to select a smallest set of features and cover data optimality. The empirical study over ten high-dimensional network traffic data sets demonstrates significant gain in accuracy and improved run-time performance of a classifier compared to individual results produced by some well-known FS techniques. 2013 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Extraction to Identify Network Traffic with Considering Packet Loss Effects

There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms

Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Networks

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013